วันพุธที่ 21 ตุลาคม พ.ศ. 2563


 บทที่ 2 อะตอมและสมบัติของธาตุ

ในสมัยโบราณมีนักปราชญ์ชาวกรีกชื่อ ดิโคริตุส (Democritus) เชื่อว่าเมื่อย่อยสารลงเรื่อย ๆ จะได้ส่วนที่เล็กที่สุดซึ่งไม่สามารถทำให้เล็กลงกว่าเดิมได้อีก และเรียกอนุภาคขนาดเล็กที่สุดว่า อะตอม 

ซึ่งคำว่า "อะตอม"(atom) เป็นคำซึ่งมาจากภาษากรีกว่า (atomas) แปลว่า แบ่งแยกอีกไม่ได้

 สสารทั้งหลายประกอบด้วยอนุภาคที่เล็กที่สุด จะไม่สามารถมองเห็นได้และจะไม่สามารถแบ่งแยกให้เล็กลงกว่านั้นได้อีก แต่ในสมัยนั้นก็ยังไม่มีการทดลอง เพื่อพิสูจน์และสนับสนุนแนวความคิดดังกล่าว

แบบจำลองอะตอม (Atomic model) เป็นภาพทางความคิดที่แสดงให้เห็น รายละเอียดของโครงสร้างอะตอมที่สอดคล้อง กับผลการทดลองและใช้อธิบายปรากฏการณ์ ของอะตอมได ้

แบบจำลองอะตอม

1) แบบจำลองอะตอมของดอลตัน

อะตอมมีลักษณะทรงกลม และเป็นอนุภาคที่มีขนาดเล็กที่สุด ซึ่งแบ่งแยกไม่ได้ และไม่สามารถสร้างขึ้นใหม่หรือทำให้สูญหายได้  จอห์น ดอลตัน นักวิทยาศาสตร์ชาวอังกฤษ เป็นนักเคมีคนแรกที่เสนอแนวคิดเกี่ยวกับอะตอม ซึ่งมีสาระสำคัญดังนี้

ธาตุประกอบด้วยอนุภาคเล็ก ๆ หลายอนุภาค อนุภาคเหล่านี้เรียกว่า อะตอม ซึ่งแบ่งแยกและทำให้สูญหายหรือสร้างขึ้นใหม่ไม่ได้

อะตอมของธาตุชนิดเดียวกันย่อมมีสมบัติเหมือนกัน มีมวลเท่าๆ กัน แต่มีสมบัติแตกต่างจากอะตอมของธาตุอื่น ๆ

สารประกอบเกิดจากอะตอมของธาตุมากกว่า ชนิด ทำปฏิกิริยากันในอัตราส่วนที่เป็นเลขลงตัวอย่างง่าย

แบบจำลองอะตอมของดอลตัน


2.แบบจำลองอะตอมของทอมสัน

อะตอม ประกอบด้วย อนุภาคโปรตอนและอิเล็กตรอนกระจายอยู่ทั่วไปอย่างสม่ำเสมอ อะตอมในสภาพที่เป็นกลางทางไฟฟ้าจะมีจำนวนประจุบวกเท่ากับประจุลบ

เซอร์โจเซฟ จอห์น ทอมสัน นักวิทยาศาสตร์ชาวอังกฤษ ได้ทำการศึกษาและทดลองเกี่ยวกับการนำไฟฟ้าของก๊าซโดยใช้หลอดรังสีแคโทด ได้ผลสรุปด้งนี้

ค่าอัตราส่วนประจุต่อมวลของอนุภาคลบหรืออิเล็กตรอน (e ) มีค่าเท่ากับ คูลอมบ์ต่อกรัม ซึ่งมีค่าคงที่เสมอไม่ขึ้นอยู่กับชนิดของก๊าซและโลหะที่ใช้ทำแคโทด

สรุปแบบจำลองอะตอมของทอมสัน
อะตอมมีลักษณะเป็นทรงกลุม มีอนุภาคที่มีประจุบวก เรียกว่า โปรตอน อนุภาคที่มีประจุลบ เรียกว่า อิเล็กตรอน และจำนวนโปรตอนเท่ากับจำนวนอิเล็กตรอนกระจายอยู่ทั่วไปในทรงกลม

การทดลองที่สนับสนุนแบบจำลองอะตอมของทอมสัน

 สโตนีย์ ได้ศึกษาผลงานของฟาราเดย์ และเป็นผู้สรุปว่า ไฟฟ้าประกอบด้วยอนุภาคทางไฟฟ้าและตั้งชื่ออนุภาคนี้ว่า อิเล็กตรอน ซึ่งเป็นอนุภาคขนาดเล็กในอะตอมของธาตุ

 ฟาราเดย์ ได้ศึกษาเกี่ยวกับการแยกสารละลายด้วยกระแสไฟฟ้าและได้ตั้งกฏการแยกสารด้วยไฟฟ้า

รอเบิร์ต แอนดูรส์ มิลลิแกน ได้ทำการทดลองต่อจากทอมสัน เพื่อหาประจุที่มีอยู่ในอิเล็กตรอนแต่ละตัว เรียกการทดลองนั้นว่า

แต่ละตัว มีมวลเท่ากับ   คูลอมบ์

 ออยแกน โกลด์สไตน์ นักวิทยาศาสตร์ชาวเยอรมัน ได้ทำการทดลองโดยใช้หลอดรังสีแคโทด พบว่า อนุภาคบวก มีค่าอัตราส่วนประจุต่อมวลไม่คงที่ ขึ้นอยู่กับชนิดของก๊าซ และอนุภาคบวกที่เกิดจากไฮโดรเจน เรียกว่า โปรตอน

 

แบบจำลองอะตอมของทอมสัน

การทดลอง

   
3.แบบจำลองอะตอมของรัทเทอร์ฟอร์ด

อะตอม ประกอบด้วย นิวเคลียสที่มีโปรตอนรวมอยู่ตรงกลาง มีขนาดเล็ก และมีมวลมาก และมีอิเล็กตรอนซึ่งมีมวลน้อยวิ่งอยู่รอบ ๆ นิวเคลียส

ลอร์อเออร์เนสต์ รัทเทอร์ฟอร์ด นักวิทยาศาสตร์ชาวอังกฤษ และฮันส์ ไกเกอร์ นักวิทยาศาสตร์ชาวเยอรมัน ได้ทำการทดลองยิงอนุภาคแอลฟาไปยังแผ่นทองคำบาง ๆ เรียกการทดลองนี้ว่าการทดลองการกระเจิงรังสีอัลฟาของรัทเทอร์ฟอร์ด

จากการทดอลองพบว่า

อนุภาคแอลฟาส่วนใหญ่วิ่งเป็นแนวเส้นตรงทะลุแผ่นทองคำบาง ๆ

อนุภาคแอลฟาบางส่วนวิ่งเบี่ยงเบนไปจากแนวเส้นตรง

อนุภาคแอลฟาส่วนน้อยสะท้อนกลับ

 ดังนั้นรัทเทอร์ฟอร์ด เชื่อว่า น่าจะมีอนุภาคอีกชนิดหนึ่งอยู่ภายในนิวเคลียส ซึ่งไม่มีประจุ แต่มีมวลใกล้เคียงกับโปรตอน

 เซอร์เจมส์ แชดวิก นักวิทยาศาสตร์ชาวอังกฤษ ได้ทำการทดลองยิงอนุภาคแอลฟา ไปยังอะตอมของธาตุต่าง ๆ และได้สรุปว่า ในนิวเคลียสของอะตอมมีอนุภาคที่เป็นกลางทางไฟฟ้า เรียกว่า นิวตรอน ดังนั้นแบบจำลองอะตอม จึงมีลักษณะดังรูป

3. แบบจำลองอะตอมของนีลส์ โบร์

นีลส์ โบร์ นักวิทยาศาสตร์ชาวเดนมาร์ก ได้ทำการศึกษาการเกิดสเปกตรัมของก๊าซไฮโดรเจน และได้สร้างแบบจำลองอะตอมเพื่อใช้อธิบายลักษณะการเคลื่อนที่ของอิเล็กตรอนรอบ ๆ นิวเคลียสเป็นวงคล้ายกับวงโคจรของดาวเคราะห์รอบดวงอาทิตย์ แต่ละวงจะมีระดับพลังงานเฉพาะตัว และเรียกระดับพลังงานของอิเล็กตรอนที่อยู่ใกล้นิวเคลียสที่สุด ซึ่งมีระดับพลังงานต่ำที่สุด เรียกว่า ระดับพลังงาน และเรียกระดับพลังงานถัดออกมาว่า ระดับพลังงาน L,M,N,... ตามลำดับ

แบบจำลองอะตอมของนีลส์ โบร์

4.แบบจำลองอะตอมของกลุ่มหมอก

อะตอมจะประกอบด้วย กลุ่มหมอกของอิเล็กตรอนรอบ ๆ นิวเคลียส โดยมีทิศทางไม่แน่นอน โอกาสที่จะพบอิเล็กตรอนบริเวณใกล้นิวเคลียสมีมากกว่าบริเวณที่อยู่ห่างจากนิวเคลียส

เนื่องจากแบบจำลองอะตอมของโบร์ใช้อธิบายได้ดีเฉพาะธาตุไฮโรเจนซึ่งมีอิเล็กตรอนเพียงตัวเดียว ดังนั้นถ้าธาตุมีหลายอิเล็กตรอน ทฤษฏีของโบร์ไม่สามารถอธิบายได้ นักวิทยาศาสตร์จึงค้นคว้า ทดลองจนเกิดเป็นแบบจำลองอะตอมแบบกลุ่มหมอก ซึ่งมีลักษณะดังนี้

อิเล็กตรอนเคลื่อนที่รอบนิวเคลียสด้วยความเร็วสูง วงโคจรไม่จำเป็นต้องเป็นวงกลมเสมอ

ไม่สามารถบอกตำแหน่งที่แน่นอนของอิเล็กตรอนได้

บริเวณกลุ่มหมอกหนาทึบ แสดงว่ามีโอกาสพบอิเล็กตรอนบริเวณนั้นมาก และบริเวณที่กลุ่มหมอกจาง แสดงว่ามีโอกาสพบอิเล็กตรอนน้อย

แบบจำลองอะตอมของกลุ่มหมอก

อนุภาคมูลฐานของอะตอม
ชนิดของอนุภาคมูลฐานของอะตอม
ทุกอะตอมประกอบด้วยอนุภาคที่สำคัญคือ โปรตอน, นิวตรอน และอิเล็กตรอน โดยมีโปรตอนกับนิวตรอนอยู่ภายในนิวเคลียส นิวเคลียสนี้จะครอบครองเนื้อที่ภายในอะตอมเพียงเล็กน้อย และมีอิเล็กตรอนวิ่งรอบๆ นิวเคลียสด้วยความเร็วสูง คล้ายกับมีกลุ่มประจุลบปกคลุมอยู่โดยรอบ

' อิเล็กตรอน (Electron) สัญลักษณ์ e - มีแระจุลบ และมีมวลน้อยมาก
' โปรตอน สัญลักษณ์ p + มีประจุเป็นบวก และมีมวลมากกว่า อิเล็กตรอน ( เกือบ 2,000 เท่า)
' นิวตรอน สัญลักษณ์ n มีประจุเป็นศูนย์ และมีมวลมากพอๆ กับโปรตอน


เลขอะตอม เลขมวล และสัญลักษณ์นิวเคลียร์
1. จำนวนโปรตอนในนิวเคลียสเรียกว่า เลขอะตอม (atomic number, Z)
2. ผลบวกของจำนวนโปรตอนกับนิวตรอนเรียกว่า เลขมวล (mass number, A)
A = Z + N โดยที่ N เป็นจำนวนนิวตรอน

( เลขเชิงมวลจะเป็นจำนวนเต็มและมีค่าใกล้เคียงกับมวลของอะตอม)

การเขียนสัญลักษณ์นิวเคลียร์

เขียน (A) ไว้ข้างบนด้านซ้ายของสัญลักษณ์ธาตุ
เขียน (Z) ไว้ข้างล่างด้านซ้ายของสัญลักษณ์ธาตุ
X = สัญลักษณ์ของธาตุ





การจัดเรียงอิเล็กตรอนในอะตอม
         
1. จำนวนอิเล็กตรอนในแต่ละระดับพลังงาน
                      
จากการศึกษาแบบจำลองอะตอมทำให้ทราบว่าอะตอมประกอบด้วยโปรตอนและนิวตรอนอยู่รวมกันในนิวเคลียสโดยอิเล็กตรอนเคลื่อนที่อยู่รอบรอบและอยู่ในระดับพลังงานต่างกันเล็กตอนเหล่านั้นอยู่กันอย่างไรและในแต่ละระดับพลังงานจะมีอิเล็กตรอนสูงสุดเท่าไหร่ให้พิจารณาข้อมูลแสดงการจัดเรียงอิเล็กตรอนของธาตุบางธาตุดังตารางธาตุ
เมื่อพิจารณาข้อมูลแล้วจะพบว่าจำนวนอิเล็กตรอนในระดับพลังงานที่ 1 มีได้มากที่สุดคือ 2 อิเล็กตรอนระดับพลังงานที่ 2 มีได้มากที่สุดคือแบบอิเล็กตรอนสำหรับระดับพลังงานที่ 3 จากการสืบค้นข้อมูลเพิ่มเติมทำให้ทราบว่ามีมากที่สุด 18 อิเล็กตรอนด้วยคือจำนวนอิเล็กตรอนมากที่สุดที่มีได้ในแต่ระดับพลังงานจะมีค่าเท่ากับ 2n^2 เมื่อ n คือตัวเลขแสดงระดับพลังงานถ้าพิจารณาตามหลัก 2n^2 การจัดเรียงอิเล็กตรอนของธาตุ K และ Ca ควรเป็น 289 และจากการศึกษาพบว่าการจัดเรียงอิเล็กตรอนของธาตุ K และ Ca เป็น 2 8 8 1 และ 2 8 8 2 ตามลำดับซึ่งหมายความว่าอิเล็กตรอนในระดับพลังงานที่ 3 ของธาตุทั้งสองมีเพียง 8 อิเล็กตรอนและอิเล็กตรอนที่เพิ่มมา 1 และ 2 อิเล็กตรอนนั้นเข้าไปอยู่ในระดับพลังงานที่ 4 ทำให้ระดับพลังงานที่ 3 มีอิเล็กตรอนไม่ครบ 18 อิเล็กตรอน

2. ระดับพลังงานหลักและระดับพลังงานย่อย

โบร์เสนอแบบจำลองโดยใช้ข้อมูลเกี่ยวกับเส้นสเปกตรัมของไฮโดรเจนซึ่งแสดงให้เห็นว่าอะตอมของไฮโดรเจนมีพลังงานหลายระดับและความแตกต่างระหว่างพลังงานของแต่ละระดับที่อยู่ถัดไปก็ไม่เท่ากันโดยความแตกต่างของพลังงานจะมีค่าน้อยลงเมื่อระดับพลังงานสูงขึ้นการอธิบายเกี่ยวกับเส้นสเปกตรัมของโบว์ได้จุดประกายให้นักวิทยาศาสตร์หลายคนเกิดความสนใจและศึกษาเกี่ยวกับเส้นสเปกตรัมมากขึ้น และพบว่าเส้นสเปกตรัมของไฮโดรเจนที่เปล่งแสงออกมาและมองเห็นเป็นหนึ่งเส้นแท้จริงนั้นประกอบด้วยเส้นสเปกตรัมมากกว่า 1 เส้นซึ่งนำไปสู่ข้อสรุปที่ว่าเส้นสเปกตรัมที่เกิดขึ้นนอกจากเป็นการคายพลังงานของอิเล็กตรอนจากระดับพลังงานหลักซึ่งแทนด้วย n แล้วยังเป็นการ พลังงานของอิเล็กตรอนจากระดับพลังงานย่อยของแต่ละระดับพลังงานหลักอีกด้วยนักวิทยาศาสตร์ได้กำหนดระดับพลังงานย่อยเป็นตัวอักษร s p d และ f ตามลำดับ
ระดับพลังงานที่ 1 (n = ) มี 1 ระดับพลังงานย่อยคือ s ระดับพลังงานหลักที่ 2 (n = 2) มี 2 ระดับพลังงานย่อยคือ s p ระดับพลังงานที่ 3 (n = 3) มี 3 ระดับพลังงานย่อยคือ s p d และระดับพลังงานหลักที่ 4 (n = 4) มี 4 ระดับพลังงานย่อยคือ s p d f
3.ออร์บิทัล

 อิเล็กตรอนมีการเคลื่อนที่ตลอดเวลาความหนาแน่นของกลุ่มหมอกอิเล็กตรอน ซึ่งอยู่ในรูปของโอกาสที่จะพบอิเล็กตรอนซึ่งมีอาณาเขตและรูปร่างใน 3 มิติแตกต่างกันบริเวณรอบนิวเคลียสซึ่งมีโอกาสที่จะพบอิเล็กตรอนและมีพลังงานเฉพาะนี้เรียกว่าออเรนทอลการศึกษา พบว่าจำนวนออร์บิทัลในแต่ละพลังงานย่อยมีค่าแตกต่างกันซึ่งสรุปได้ดังนี้ระดับพลังงานย่อย s มี 1 ออร์บิทัล ระดับพลังงานย่อย p มี 3 ออร์บิทัล ระดับพลังงานย่อยดีมี 5 ออร์บิทัล รอบพลังงานย่อย f มี 7 ออร์บิทัล
อิเล็กตรอนที่อยู่ในระดับพลังงานสูงสุดหรือชั้นนอกสุดของอะตอมเรียกว่า เวเลนซ์อิเล็กตรอน การบรรจุอิเล็กตรอน ตามลำดับระดับพลังงานโดยอาศัยแผนภาพตามหลัก อาฟบาว ดังที่กล่าวมาแล้ว มีบางธาตุที่การบรรจุอิเล็กตรอนในระดับพลังงานย่อยไม่ได้เป็นไปตามหลักการนั้น เช่น Cr มีเลขอะตอม 24 Cu มีเลขอะตอม 29 ธาตุที่ได้รับหรือเสียอิเล็กตรอน สามารถเขียนการจัดเรียงอิเล็กตรอนได้ดังนี้ 1.กรณีที่ถ้าได้รับอิเล็กตรอน ให้บรรจุอิเล็กตรอนปกติรวมกับอิเล็กตรอนที่รับเข้ามาตามลำดับระดับพลังงานโดยอาศัยแผนภาพตามหลัก อาฟบาว 2.กรณีที่ถ้าเสียอิเล็กตรอนให้บรรจุอิเล็กตรอน ตามปกติก่อนจากนั้นจึงนำอิเล็กตรอนที่อยู่ชั้นนอกสุดออก




ตารางธาตุ


วิวัฒนาการการสร้างตารางธาตุ
 

         โยฮันดน์ เดอเบอไรเนอร์  

จัดธาตุเป็นกลุ่ม ๆ ละ 3 ธาตุ เรียกว่า ชุดสาม และพบว่าธาตุกลาง
จะมีมวลอะตอมเป็นค่าเฉลี่ยของมวลอะตอมของธาตุแรกและธาตุหลังโดยประมาณ  เช่น
       Li มีมวล 6.9    Na มีมวล 23.0    K มีมวล 39.1
       มวลอะตอม Na =    = 23

มีบางกลุ่มที่มวลอะตอมของธาตุตรงกลางไม่เท่ากับค่าเฉลี่ยของธาตุสองธาตุที่เหลือ    หลักชุดสามของเดอเบอร์ไรเนอร์จึงไม่เป็นที่ยอมรับ      
            
              จอห์น นิวแลนด์ส  ได้เสนอกฎว่า ถ้านำธาตุมาเรียงลำดับตามมวลอะตอมจะพบว่าธาตุที่   8  มีสมบัติคล้ายกับธาตุที่ 1  โดยเริ่มจากธาตุใดก็ได้
แต่ไม่รวมก๊าซเฉื่อย    แต่กฎนี้ใช้ได้ถึงธาตุแคลเซียมเท่านั้น และไม่สามารถอธิบายได้ว่า เหตุใดมวลอะตอมจึงมาเกี่ยวข้องกับความคล้ายคลึงกันของธาตุได้

เมนเดเลเอฟและไมเออร์ 

ได้ตั้งข้อสังเกตอย่างเดียวกันในเวลาใกล้เคียงกันว่าถ้าเรียงธาตุตามลำดับมวลอะตอมจากน้อยไปหามาก   จะพบว่าธาตุมีสมบัติคล้ายคลึงกันเป็นช่วง ๆ     การที่ธาตุต่าง ๆ มีสมบัติคล้ายคลึงกันเป็นช่วงเช่นนี้ เมนเดเลเอฟ ตั้งเป็นกฎเรียนว่า กฎพีริออดิก” และได้เผยแพร่ความคิดนี้ในปี พ.. 2412 (.. 1869) ก่อนที่ไมเออร์จะพิมพ์ผลงานของเขาออกมาหนึ่งปี เพื่อให้เกียรติแก่เมนเดเลเอฟ จึงเรียกว่า ตารางพีริออดิกของเมนเดเลเอฟ

เมนเดเลเอฟได้จัดธาตุที่มีสมบัติคล้ายคลึงกันที่ปรากฏซ้ำกันเป็นช่วง ๆ ให้อยู่ในแนวดิ่ง หรือในหมู่เดียวกันและพยายามเรียงลำดับมวลอะตอมของธาตุจาก
น้อยไปหามาก ถ้าเรียงตามมวลอะตอมแล้วสมบัติไม่สอดคล้องกัน ก็พยายามจัดให้เข้าหมู่โดยเว้นช่องว่างไว้ ซึ่งเขาคิดว่าช่องว่างเหล่านั้นน่าจะเป็นตำแหน่ง
ของธาตุที่ยังไม่มีการค้นพบ  และยังได้ใช้สมบัติของธาตุและสารประกอบอื่น ๆ  นอกเหนือจากคลอไรด์และออกไซด์มาประกอบการพิจารณาด้วย โดยที่ตำแหน่งของธาตุในตารางธาตุมีความสัมพันธ์กับสมบัติของธาตุ  เมนเดเลเอฟจึง
สามารถทำนายสมบัติของธาตุในช่องว่างใต้ซิลิคอนได้อย่างใกล้เคียงดังตาราง 
1.6    โดยเขาให้ชื่อธาตุนี้ว่า

ธาตุเอคาซิลิคอน  15 ปีต่อมาวิงค์เลอร์จึงค้นพบธาตุนี้ ในปี พ.. 2429 (.. 1886)      ซึ่งก็คือ  ธาตุเจอร์เมเนียม

 



การเรียงธาตุตามวลอะตอมในตารางพีริออดิกของเมนเดเลเอฟนั้น ถ้ายึดหลักการเรียงตามมวลอะตอมโดยเคร่งครัด จะทำให้ธาตุบางธาตุอยู่ในหมู่เดียวกันมีสมบัติแตกต่างกันจึงต้องยกเว้นไม่เรียงตามมวลอะตอมบ้าง แต่เมนเดเลเอฟก็ไม่สามารถอธิบายได้ว่าเพราะเหตุใดจึงต้องจัดเรียงธาตุเช่นนั้น เนื่องจากในสมัยนั้นยังไม่มีความเข้าใจเรื่องโครงสร้างของอะตอมและไอโซโทป นักวิทยาศาสตร์รุ่นต่อมาจึงเกิดแนวความคิดว่า ตำแหน่งของธาตุในตารางธาตุไม่น่าจะขึ้นอยู่กับมวลอะตอมของธาตุ แต่น่าจะขึ้นอยู่กับสมบัติอื่นที่มีความสัมพันธ์กับมวลอะตอม

เฮนรี โมสลีย์ พบว่าการเรียงธาตุตามลำดับเลขอะตอม หรือจำนวนโปรตอนมีความสัมพันธ์กับสมบัติของธาตุนั้น และขึ้นอยู่กับการจัดเรียงตัวของอิเล็กตรอนในอะตอมของธาตุนั้น ๆ

ตารางธาตุในปัจจุบัน  
     ตารางธาตุในปัจจุบันเรียงตามลำดับ เลขอะตอมจากน้อยไปหามาก ซึ่งแบ่งออกเป็น กลุ่ม ใหญ่ ๆ ดังรูป





     2.   ธาตุหมู่ 
เลขประจำหมู่บ่งบอกถึงจำนวนเวเลนต์อิเล็กตรอน1.  ธาตุในแต่ละหมู่และแต่ละคาบมีจำนวนไม่เท่ากัน
            หมู่ 
เรียกว่า ธาตุเรพรีเซนเตตีฟ
            หมู่ เรียกว่า ธาตุแทรนซิชัน เป็นธาตุที่อยู่ระหว่างหมู่ IIA และ IIIA 2. 
ธาตุทางซ้ายมือ
            ของเส้นหนักเป็นขั้นบันได
   
มีสมบัติเป็นโลหะและธาตุทางขวาของเส้นจะเป็นอโลหะ  
            ส่วนธาตุที่อยู่ชิดเส้นแบ่งนี้จะเป็นธาตุกึ่งโลหะ คือ 
B , Si , Ge , As , Sb และ Te 

          เช่น หมู่ IA มีเวเลนต์อิเล็กตรอนท่ากับ คือธาตุ Li  Na  K  Rb  Cs  Fr เป็นต้น

     3.   ธาตุในคาบเดียวกันจะมีจนวนระดับพลังงานเท่ากัน เช่น
           ธาตุคาบที่ มีจำนวนระดับพลังงาน ระดับได้แก่ ธาตุ H  He เป็นต้น

ตารางธาตุที่ใช้กันอยู่ในปัจจุบันนั้น มีการจัดเรียง คือ

 1. จัดเรียงธาตุตามแนวนอนโดยเรียงลำดับเลขอะตอมที่เพิ่มขึ้นจากซ้ายไปขวา
 2.ธาตุซึ่งเรียงตามลำดับเลขอะตอมที่เพิ่มขึ้นและเป็นแถวตามแนวนอนเรียกว่า คาบ ซึ่งมีทั้งหมด 7 คาบ ได้แก่
·         คาบที่ 1 มี 2 ธาตุ คือ และ He
·         คาบที่ 2 มี 8 ธาตุ คือ Li จนถึง Ne
·         คาบที่ 3 มี 8 ธาตุ คือ Na จนถึง Ar
·         คาบที่ 4 มี 18 ธาตุ คือ จนถึง Kr
·         คาบที่ 5 มี 18 ธาตุ คือ Rb จนถึง Xe
·         คาบที่ 6 มี 32 ธาตุ คือ Cs ถึง Rn
·         คาบที่ 7 มี 29 ธาตุ(ที่ค้นพบ) คือ Fr จนถึง Ds และ Uuu Uub Uuq Uuh Uu
  3. ธาตุในแถวตามแนวตั้ง มีทั้งหมด 18 แถว เรียกว่า หมู่ ซึ่งมีตัวเลขกำกับ แบ่งออกเป็นหมู่ย่อย และ โดยที่
    หมู่ย่อย มี 8 หมู่ คือ หมู่ I A จนถึง VIII A  (หมู่ O) และในหมู่ย่อยต่างๆ ของหมู่ ก็มีชื่อเรียกเฉพาะ โดย
- หมู่ I A มีชื่อว่า โลหะอัลคาไล
- หมู่ II A มีชื่อว่า โลหะอัลคาไลน์ เอิร์ธ
- หมู่ VI A มีชื่อว่า คาลโคเจน
- หมู่ VII A มีชื่อว่า แฮโลเจน
- หมู่ VIII A มีชื่อว่า ก๊าซมีตระกูล (Noble Gas) หรือ ก๊าซเฉื่อย (Inert Gas)
    หมู่ย่อย มี 8 หมู่ คือ หมู่ I B จนถึง VIII B แต่เรียงเริ่มจากหมู่ III B ถึงหมู่ II B ซึ่งมีชื่อเรียกว่า ธาตุแทรซิชัน (Transition Elements)
  4. ส่วนธาตุ 2 แถวล่าง ซึ่งแยกไว้ต่างหากนั้น เรียกว่า ธาตุแทรนซิชันชั้นใน (Inner transition elements)
   ธาตุแถวบนคือธาตุที่มีเลขอะตอมตั้งแต่ 58 ถึง 71 เรียกว่า กลุ่มธาตุแลนทาไนด์ (Lanthanide series) ธาตุกลุ่มนี้ควรจะอยู่ในหมู่ III B โดยจะเรียงต่อจากธาตุ La
   ส่วนแถวล่าง คือ ธาตุที่มีเลขอะตอมตั้งแต่ 90 ถึง 103 เรียกว่า กลุ่มธาตุแอกทิไนด์ (Actinide series) ธาตุกลุ่มนี้ควรอยู่ในหมู่ III B โดยเรียงต่อจากธาตุ Ac
  5. ธาตุไฮโดรเจนมีสมบัติบางอย่างคล้ายธาตุหมู่ 1 และมีสมบัติบางอย่างคล้ายธาตุหมู่ 7 จึงแยกไว้ต่างหาก
  6. ธาตุที่เป็นโลหะและอโลหะถูกแยกออกจากกันด้วยเส้นหนักขั้นบันได โดยทางซ้ายของเส้นบันไดเป็นโลหะ ทางขวาของเส้นขั้นบันไดเป็นอโลหะ ส่วนธาตุที่อยู่ชิดเส้นบันไดจะมีสมบัติก้ำกึ่งระหว่างโลหะกับอโลหะ เรียกธาตุพวกนี้ว่า ธาตุกึ่งโลหะ (Metalloid) ได้แก่ โบรอน (B) ซิลิคอน (Si) เจอร์เมเนียม (Ge) อาร์เซนิกหรือสารหนู (As) แอนติโมนีหรือพลวง (Sb) และเทลลูเรียม (Te)

การอ่านชื่อธาตุที่มีเลขอะตอมมากกว่า 105  โดยระบุเลขอะตอมเป็นภาษาละติน แล้วลงท้ายด้วย -ium
       จำนวนนับในภาษาละตินมีดังนี้
      0 = (nil)          1 = (un)        
      2 = (bi)           3 = (tri)        
      4 = (quad)     5 = (pent)
      6 = (hex)       7 = (sept)      
      8 = (oct)        9 = (enn)
เช่น ธาตุที่ 105 อ่านว่า Unnilpentium สัญลักษณ์ธาตุ Unp

การเรียนกชื่อธาตุที่มีเลขอะตอมมากกว่า 100


*** ขออนุญาตเจ้าของด้วยนะคะ***

เลขออกซิเดชัน

1. เลขออกซิเดชันของธาตุอิสระมีค่าเป็น 0 เช่น  Na, O2 และ  P4
2. โลหะแอลคาไล (alkali metal = หมู่ IA) มีเลขออกซิเดชันเป็น +1
     โลหะแอลคาไลน์เอิร์ท (หมู่ IIA) มีเลขออกซิเดชันเป็น +2
3. มีเลขออกซิเดชันเป็น +1 ยกเว้นเมื่อเป็นสารประกอบโลหะไฮไดรด์ เช่น NaH อะตอมของธาตุ มีเลขออกซิเดชันเป็น -1
4. มีเลขออกซิเดชันเป็น -2 ยกเว้นในสารประกอบเปอร์ออกไซด์ (peroxide) และสารประกอบซูเปอร์ออกไซด์ (superoxide)
        – สารประกอบเปอร์ออกไซด์ เช่น H2O2 อะตอมของธาตุ มีเลขออกซิเดชันเป็น -1 และ
        – สารประกอบซูเปอร์ออกไซด์ เช่น Na2อะตอมของธาตุ มีเลขออกซิเดชันเป็น -1/2
5. เลขออกซิเดชันของไอออนอะตอมเดี่ยวมีค่าเท่ากับประจุของไอออนนั้น เช่น
       – Na+ มีเลขออกซิเดชันเป็น +1
       – O2– มีเลขออกซิเดชันเป็น -2
   เลขออกซิเดชันของไอออนที่เป็นหมู่อะตอมมีผลรวมของเลขออกซิเดชันเท่ากับประจุของไอออนนั้น เช่น
       – SO42- อะตอมของธาตุ มีเลขออกซิเดชันเป็น +6 และอะตอมของธาตุ มีเลขออกซิเดชันเป็น -2
6.  ผลรวมของเลขออกซิเดชันของสารที่เป็นกลางทางไฟฟ้ามีค่าเป็น 0 เช่น
       – NaCl อะตอมของธาตุ Na มีเลขออกซิเดชันเป็น +1 และ อะตอมของธาตุ Cl มีเลขออกซิเดชันเป็น -1 ส่วน
       – HNO3 อะตอมของธาตุ มีเลขออกซิเดชันเป็น +1 อะตอมของธาตุ มีเลขออกซิเดชันเป็น +5 และอะตอมของธาตุ มีเลขออกซิเดชัน เป็น -2

ตัวอย่างที่ 1 จงหาเลขออกซิเดชันของ Cr ใน [ Cr(H 2O) 4Cl 2]ClO 4
    วิธีทำ 2มีเลขออกซิเดชันเท่ากับ 0
           Cl - มีเลขออกซิเดชันเท่ากับ - 1
           ClO 4 มีเลขออกซิเดชันเท่ากับ - 1
        ให้ Cr มีเลขออกซิเดชันเท่ากับ A
                A + ( 0 x 4 ) + ( - 1 x 2 ) + ( - 1 ) = 0
                A = + 1 + 2 = + 3

ขนาดไอออน
                      
อะตอมซึ่งมีจำนวนโปรตอนเท่ากับอิเล็กตรอนเมื่อรับอิเล็กตรอนเพิ่มเข้ามาหรือเสียอิเล็กตรอนออกไปอะตอมจะกลายเป็นไอออนการบอกขนาดของไอออนทำได้เช่นเดียวกับการบอกขนาดของอะตอม กล่าวคือ จะบอกเป็นค่ารัศมีไอออนซึ่งพิจารณาจากระยะทางระหว่างนิวเคลียสของไอออนคู่หนึ่งหนึ่งที่ยึดเหนี่ยวซึ่งกันและกันในโครงผลึก
 เมื่อโลหะ ทำปฏิกิริยากับอโลหะอะตอมของโลหะจะเสียเวลาแต่เล็กจนกลายเป็นไอออนบวกจำนวนอิเล็กตรอนในอะตอมจึงลดลงทำให้แรงผลักระหว่างอิเล็กตรอนลดลงด้วยหรือกล่าวอีกนัยหนึ่งก็คือแรงดึงดูดระหว่าง ประจุในนิวเคลียสกับอิเล็กตรอนจากเพิ่มมากขึ้น Iron ห่วงจึงมีขนาดเล็กกว่าอะตอมเดิม ส่วนอะตอมของอโลหะนั้นส่วนใหญ่จะรับอิเล็กตรอนเพิ่มเข้ามาและเกิดเป็นไอออนลบเนื่องจากมีการเพิ่มขึ้นของจำนวนอิเล็กตรอนขอบเขตของกลุ่มหมอกอิเล็กตรอนจะขยายออกไปจากเดิมไอออนลบจึงมีขนาดใหญ่กว่าอะตอมเดิม ดังรูป


         พลังงานไอออไนเซชัน 
                    พลังงานปริมาณน้อยที่สุดที่ทำให้อิเล็กตรอนหลุดจากอะตอมในสถานะแก๊สเรียกว่าพลังงานไอออไนเซชัน โดยค่า IE แสดงถึงความยากง่ายในการทำให้ อะตอมในสถานะแก๊สกลายเป็นไอออนบวก โดยอีน้อยแสดงว่าทำให้เป็นไอออนบวกได้ง่ายแต่ถ้า IE มากแสดงว่าทำให้เป็นไอออนบวกได้ยากก็ทำให้ไฮโดรเจนอะตอมในสถานะแก๊สกลายเป็นไรโดยเช่นไอออนและสถานะแก๊สเขียนได้ดังนี้                                                                    
                                                      H(g) ----> H^+(g) + e^- 
                     การทำให้อิเล็กตรอนหลุดออกจากอะตอมของไฮโดรเจนจะต้องใช้พลังงานอย่างน้อยที่สุด 1318 กิโลจูลต่อโมล นั่นคือ พลังงานไอออไนเซชันของไฮโดรเจนอะตอมเท่ากับ 1318 กิโลจูลต่อโมล ธาตุไฮโดรเจน มี 1 อิเล็กตรอนจึงมีค่าพลังงานไอออไนเซชันเพียงค่าเดียวถ้าธาตุที่มีหลายอิเล็กตรอน ก็จะมีพลังงานไอออไนเซชันหลายค่าพลังงานที่น้อยที่สุดที่ทำให้อิเล็กตรอนตัวแรกหลุดออกมาจากอะตอม ที่อยู่ในสถานะแก๊สเรียกว่าพลังงานไอออไนเซชันลำดับที่ 1 เขียนย่อเป็น IE 1 พลังงานที่ทำให้อิเล็กตรอนในลำดับต่อๆมาหลุดออกมาจากอะตอมเรียกว่าพลังงานไอออไนเซชันลำดับที่ 2 3 ... และเขียนย่อเป็น IE 2 IE 3 ตามลำดับ
        
สัมพรรคภาพอิเล็กตรอน 
                     
พลังงานที่ถูกคายออกมาเมื่ออะตอมในสถานะแก๊สได้รับอิเล็กตรอน 1 อิเล็กตรอนเลขว่าสัมพรรคภาพอิเล็กตรอนเขียนสมการการเปลี่ยนแปลงได้ดังนี้ 
                                                      A(g) + e^- ---> A^-(g)
                     หาค่าสัมพรรคภาพอิเล็กตรอน มีค่าเป็นบวกหมายความว่าอะตอมคายพลังงานเมื่อได้รับอิเล็กตรอนแสดงว่าอะตอมของธาตุนั้นมีแนวโน้มที่จะได้รับอิเล็กตรอนได้ดี ถ้าค่าสัมพรรคภาพอิเล็กตรอนเป็นลบแปลว่าต้องใช้พลังงานเพิ่มเข้าไปเพื่อให้และรับอิเล็กตรอนได้เพิ่มขึ้น 1 อิเล็กตรอน เมื่อพิจารณาตามข้อพบว่าค่าสัมพรรคภาพอิเล็กตรอนของธาตุอโลหะยกเว้น หมู่ VIIIA มีค่ามากกว่าธาตุโลหะแสดงว่าธาตุอโลหะมีแนวโน้มที่จะได้รับอิเล็กตรอนได้ดีกว่าถ้าโลหะเมื่อพิจารณาโดยภาพรวมทั้งหมดจะพบว่าธาตุหมู่ VIIA มีค่าสัมพรรคภาพอิเล็กตรอนสูงที่สุดแสดงว่ามีแนวโน้มในการรับอิเล็กตรอนได้ดีกว่าท่านผู้อื่นที่เป็นเช่นนี้อาจอธิบายได้ว่าการรับ 1 อิเล็กตรอนของธาตุในหมู่นี้จะทำให้มีอะตอมที่มีการจัดเรียงอิเล็กตรอนของธาตุหมู่ VIIA หรือแก๊สมีสกุลซึ่งมีความเสถียรมาก
          
 อิเล็กโทรเนกาติวิตี
               
 อิเล็กโทรเนกาติวิตีความสามารถของอะตอมในการดึงดูดอีเล็คตรอนคู่ที่ใช้ร่วมกันในโมเลกุลของสารแนวโน้มค่าอิเล็กโทรเนกาติวิตีของธาตุในตารางเป็นดังนี้
เมื่อพิจารณาค่าอิเล็กโทรเนกาติวิตีของธาตุในคาบเดียวกันพบว่ามีแนวโน้มเพิ่มขึ้นตามเลขอะตอมเนื่องจากในคาบเดียวกันอะตอมของธาตุหมู่ IA มีขนาดใหญ่ที่สุดและหมู่ VIIA มีขนาดเล็กที่สุด ความสามารถในการดึงดูดอีเล็คตรอนตามข้ามจึงเพิ่มขึ้นจากหมู่ IA ไปหมู่ VIIA ดังนั้นในคาบเดียวกันธาตุหมู่ IA จึงมีค่าอิเล็กโทรเนกาติวิตีต่ำที่สุดควรธาตุหมู่ VIIA มีค่าอิเล็กโทรเนกาติวิตีสูงที่สุดธาตุในหมู่เดียวกันมีแนวโน้มของค่าอิเล็กโทรเนกาติวิตี ลดลงเมื่อเลขอะตอมเพิ่มขึ้นเนื่องจากขนาดของอะตอมที่เพิ่มขึ้นเป็นผลให้นิวเคลียสดึงดูดอิเล็กตรอนลดลง

ไม่มีความคิดเห็น:

แสดงความคิดเห็น

PAT